Construcción de Cayley-Dickson

Construcción de Cayley-Dickson
En matemáticas, la construcción de Cayley-Dickson produce una secuencia de álgebras sobre el cuerpo de los números reales, cada una con dimensión doble que la anterior. Las álgebras producidas por este proceso son conocidas como álgebras de Cayley-Dickson; dado que son una extensión de los números complejos, son números hipercomplejos.

Enciclopedia Universal. 2012.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • Construcción de Cayley-Dickson — En matemáticas, la construcción de Cayley Dickson produce una secuencia de álgebras sobre el cuerpo de los números reales, cada una con dimensión doble que la anterior. Las álgebras producidas por este proceso son conocidas como álgebras de… …   Wikipedia Español

  • Arthur Cayley — Arthur Cayley. Arthur Cayley (Richmond, Reino Unido, 16 de agosto de 1821 Cambridge, 26 de enero de 1895) fue un matemático británico. Es uno de los fundadores de la escuela británica moderna de matemáticas puras. Además de su predilección por… …   Wikipedia Español

  • Sedeniones — Los sedeniones forman un álgebra 16 dimensional sobre los números reales y se obtienen aplicando la Construcción de Cayley Dickson sobre los octoniones. Como en los octoniones, la multiplicación de sedeniones no es conmutativa, ni asociativa.… …   Wikipedia Español

  • Cuaternión — Saltar a navegación, búsqueda Los cuaterniones son una extensión de los números reales, similar a la de los números complejos. Mientras que los números complejos son una extensión de los reales por la adición de la unidad imaginaria i, tal que i2 …   Wikipedia Español

  • Número hipercomplejo — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Octonión — Los octoniones son la extensión no asociativa de los cuaterniones. Fueron descubiertos por John T. Graves en 1843, e independientemente por Arthur Cayley, quien lo publicó por primera vez en 1845. Son llamados, a veces números de Cayley. Los… …   Wikipedia Español

  • Sedeniones — Los sedeniones forman una álgebra 16 dimensional sobre los números reales y se obtienen aplicando la Construcción de Cayley Dickson sobre los octoniones. Como en los octoniones, la multiplicación de sedeniones no es conmutativa, ni asociativa.… …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”